A Bayesian Approach to Estimating Seemingly Unrelated Regression for Tree Biomass Model Systems
نویسندگان
چکیده
منابع مشابه
Bayesian Geoadditive Seemingly Unrelated Regression
Parametric seemingly unrelated regression (SUR) models are a common tool for multivariate regression analysis when error variables are reasonably correlated, so that separate univariate analysis may result in inefficient estimates of covariate effects. A weakness of parametric models is that they require strong assumptions on the functional form of possibly nonlinear effects of metrical covaria...
متن کاملBayesian Geoadditive Seemingly Unrelated Regression 1
Parametric seemingly unrelated regression (SUR) models are a common tool for multivariate regression analysis when error variables are reasonably correlated, so that separate univariate analysis may result in inefficient estimates of covariate effects. A weakness of parametric models is that they require strong assumptions on the functional form of possibly nonlinear effects of metrical covaria...
متن کاملBayesian nonparametric sparse seemingly unrelated regression model (SUR)∗
Seemingly unrelated regression (SUR) models are useful in studying the interactions among different variables. In a high dimensional setting or when applied to large panel of time series, these models require a large number of parameters to be estimated and suffer of inferential problems. To avoid overparametrization and overfitting issues, we propose a hierarchical Dirichlet process prior for ...
متن کاملEstimating parameters for tree basal area growth with a system of equations and seemingly unrelated regressions
A method was developed for estimating parameters in an individual tree basal area growth model using a system of equations based on dbh rank classes. The estimation method developed is a compromise between an individual tree and a stand level basal area growth model that accounts for the correlation between trees within a plot by using seemingly unrelated regression (SUR) to estimate the restri...
متن کاملEfficient Semiparametric Seemingly Unrelated Quantile Regression Estimation
We propose an efficient semiparametric estimator for the coefficients of a multivariate linear regression model — with a conditional quantile restriction for each equation — in which the conditional distributions of errors given regressors are unknown. The procedure can be used to estimate multiple conditional quantiles of the same regression relationship. The proposed estimator is asymptotical...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Forests
سال: 2020
ISSN: 1999-4907
DOI: 10.3390/f11121302